Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code.
نویسنده
چکیده
My previous theoretical research shows that the rotating circular genetic code is a viable tool to make easier to distinguish the rules of variation applied to the amino acid exchange; it presents a precise and positional bio-mathematical balance of codons, according to the amino acids they codify. Here, I demonstrate that when using the conventional or classic circular genetic code, a clearer pattern for the human codon usage per amino acid and per genome emerges. The most used human codons per amino acid were the ones ending with the three hydrogen bond nucleotides: C for 12 amino acids and G for the remaining 8, plus one codon for arginine ending in A that was used approximately with the same frequency than the one ending in G for this same amino acid (plus *). The most used codons in man fall almost all the time at the rightmost position, clockwise, ending either in C or in G within the circular genetic code. The human codon usage per genome is compared to other organisms such as fruit flies (Drosophila melanogaster), squid (Loligo pealei), and many others. The biosemiotic codon usage of each genomic population or 'Theme' is equated to a 'molecular language'. The C/U choice or difference, and the G/A difference in the third nucleotide of the most used codons per amino acid are illustrated by comparing the most used codons per genome in humans and squids. The human distribution in the third position of most used codons is a 12-8-2, C-G-A, nucleotide ending signature, while the squid distribution in the third position of most used codons was an odd, or uneven, distribution in the third position of its most used codons: 13-6-3, U-A-G, as its nucleotide ending signature. These findings may help to design computational tools to compare human genomes, to determine the exchangeability between compatible codons and amino acids, and for the early detection of incompatible changes leading to hereditary diseases.
منابع مشابه
The Quantum Workings of the Rotating 64-Grid Genetic Code.
In this article, the pattern learned from the classic or conventional rotating circular genetic code is transferred to a 64-grid model. In this non-static representation, the codons for the same amino acid within each quadrant could be exchanged, wobbling or rotating in a quantic way similar to the electrons within an atomic orbit. Represented in this 64-grid format are the three rules of varia...
متن کاملConsequences of stop codon reassignment on protein evolution in ciliates with alternative genetic codes.
Tetrahymena thermophila and Paramecium tetraurelia are ciliates that reassign TAA and TAG from stop codons to glutamine codons. Because of the lack of full genome sequences, few studies have concentrated on analyzing the effects of codon reassignment in protein evolution. We used the recently sequenced genome of these species to analyze the patterns of amino acid substitution in ciliates that r...
متن کاملNon-Standard Genetic Codes Define New Concepts for Protein Engineering
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondri...
متن کاملOn the Organizational Dynamics of the Genetic Code
The organization of the canonical genetic code needs to be thoroughly illuminated. Here we reorder the four nucleotides-adenine, thymine, guanine and cytosine-according to their emergence in evolution, and apply the organizational rules to devising an algebraic representation for the canonical genetic code. Under a framework of the devised code, we quantify codon and amino acid usages from a la...
متن کاملThe Selective Advantage of Synonymous Codon Usage Bias in Salmonella.
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroQuantology : an interdisciplinary journal of neuroscience and quantum physics
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2011